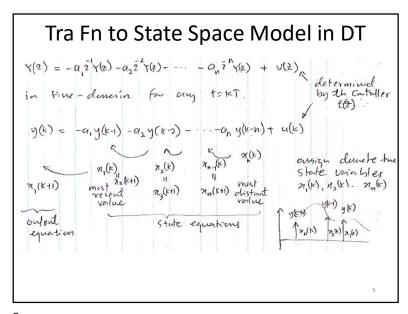
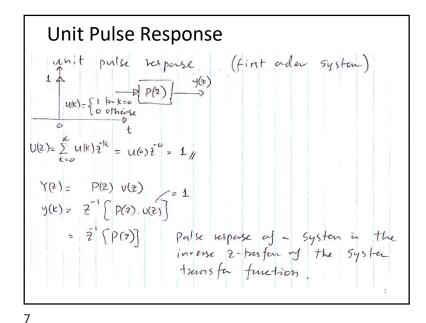
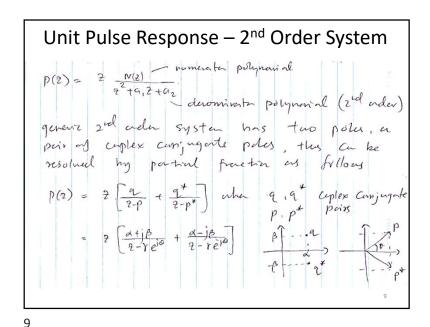

EN5101 Digital Control Systems


Pulse Response Digital Approximations Stability

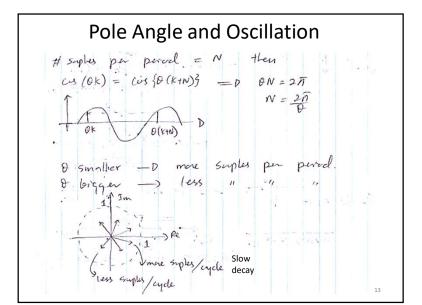

Prof. Rohan Munasinghe Dept of Electronic and Telecommunication Engineering University of Moratuwa



73(kti) =	71(K)
7/n(K+1) =	21 _{n-1} (k)
In matrix	form,
(n, (k+1)	$\begin{bmatrix} -\alpha_1 & -\alpha_2 & \dots & -\alpha_n \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix} \begin{pmatrix} n_1(k) \\ n_2(k) \\ \vdots \\ n_n(k) \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} u(k)$
21, (K+1)	1 0 · · · 0 1/2(k) + 0 u(k)
	0 1 0 ;
20 (Kt1)	00 . 10 n/(+)) 0]

Eg: Palse	P(2) =	= b, 2 7-a,	first adea (:		
	76-2	2 7 [h = 2		DOCAM Z[a	k]= 2/7-9
	. = 2	= b, a, k	e yporation	clean fr	- 19,1 < 1 - 19,1 > 1
		Siz	non osoi ze osoillu	-	a, is +re a, is -re
	ai	11 >1	11 < 1	La province	^ Z-plane
sign	- ve + ve	oscillateg gruing (unstable) non oscillateg graing (unstable)	oscillateg decaying (Stable) nonosoillateg decaying (Stable)	unstable si	1 unstable

unit pula surpase $u(z)=1 \frac{1}{p(z)} \frac{1}{p(z)} \frac{1}{y(z)}$ $= \frac{1}{z^2} \left[\frac{1}{p(z)} \frac{1}{y(z)} + \frac{1}{2-y^2} \frac{1}{p(z)} \right]$ $= \frac{1}{z^2} \left[\frac{1}{(2+y^2)^2} \frac{1}{2-y^2} \frac{1}{p(z)} + \frac{1}{(2+y^2)^2} \frac{1}{2-y^2} \frac{1}{p(z)} \right]$ $= \frac{1}{z^2} \left[\frac{1}{(2+y^2)^2} \frac{1}{2-y^2} \frac{1}{p(z)} + \frac{1}{(2+y^2)^2} \frac{1}{2-y^2} \frac{1}{p(z)} \right]$ $= \frac{1}{z^2} \left[\frac{1}{(2+y^2)^2} \frac{1}{($


Pole Radius and Decay rate Response magnitude = 2rk out of the unstabe Quiz: Determine the number of samples for the response to decay down to 1% of the new on the initial magnitude origin unit circle Sustaired faster ascillation decuy 11

Pole Radius and Decay rate out of the unit circle # saples to decuy to 1% of the initial value unstabe magnitude at k=0 = 2 , k=n = 2 , k=n = 2new on the unit circle origin Sustaired 0-01 = 7h faster ascillation 109 0-01 # Saples to 1% Z-plane 0.9 43 0-8 unstable unstable 0.6 0.4 Slow Fast decay decay

10

12

11

13

Stable Or Unstable?

- CT system $\frac{1}{s+a}$ is stable $\forall a>0$. Then, the sampled system has to be stable as well
- As per the corresponding DT system $\frac{z}{z-\rho-aT}$, stability criterion is

$$e^{-aT} \le 1$$

$$\ln(e^{-aT}) \le \ln 1$$

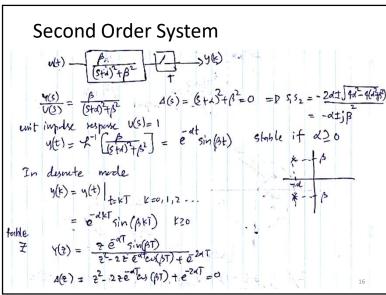
$$-aT \le 0$$

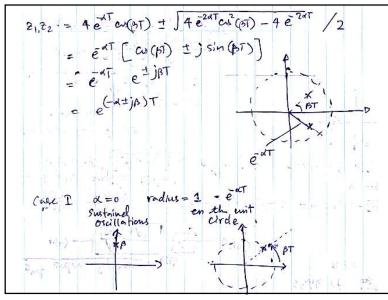
which is true for any sampling interval T

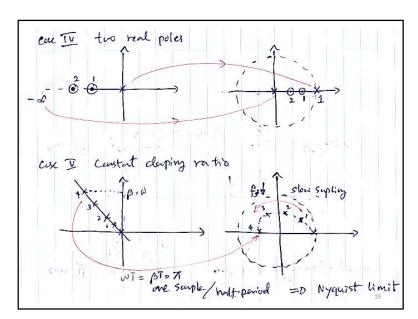
LOCation

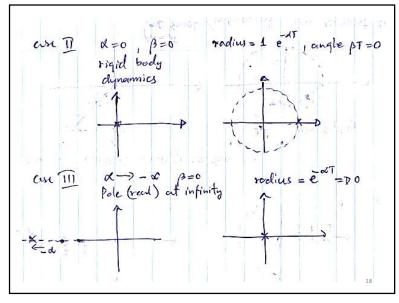
Star T

y(x)


Star T


S-plane


s-plane


y(t) = $\frac{1}{|s|}$ | $\frac{1}{|s|}$ | In descrete mule wnit eircle 14

Effect of Sampling on Pole Locations

Eq. Find the describe time pole-locations of
$$G(s) = \frac{\omega_n}{s'+2\gamma}\omega_n + \omega_n^2$$
for 2=0.6, $\omega_n = s$ red/s.

I check stability against surpling interval T (11 $\angle 1$)

I check aligning u

II T ($A \angle 180^\circ$)

Li(s) = $\frac{5}{s^2} + 2 \times 0.6 \times 5 s + 5^2$
 $\Delta S(s) = s^2 + 6 \times 12 s = 0$

The poles $S(s) = s^2 + 6 \times 12 s = 0$

Alternatively

 $S(s) = s^2 + 6 \times 12 s = 0$

Alternatively

 $S(s) = s^2 + 6 \times 12 s = 0$
 $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

The sum of $S(s) = s^2 + 6 \times 12 s = 0$

Tha

Shability

1031 | < 1 this always true for my +>0

Note: A stable Ca(s) has Stable Z(s) under any T.

however, slow supring may cause calicusing in the feedback emop which will defenience the response.

for supring at 4 Hz T=0.25 s

2,12 = 0.255 ± j 0.398

1. (60)

5 = 4Hz

1. (15)

1. (15)

1. (15)

21

_